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What is Electronic Health Records (EHR) Data?
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• A list of temporally ordered visit data
q Static features (e.g., gender, ethnicity)
q Dynamic features (e.g., hemoglobin, creatinine)
q Diagnostic result (e.g., chronic heart disease)

Static Features Value

Gender Female

Ethnicity Black

… … …
Dynamic Features

Diagnostic Result



What We Do?
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• Given electronic health records data
q Effectively learn the patient representation for disease prediction

Patient A EHR

Patient B EHR

Patient C EHR

Type I

Type II

Type n
⋮

Patient A 
Representation

Patient B 
Representation

Patient C 
Representation

Disease A



Related Works
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q TCN

q AdaCare (AAAI)

q T-LSTM (KDD)
q StageNet (WWW)

q ConCare (AAAI)

Variation Pattern Detection Methods
q RETAIN (NIPS)
q Dipole (KDD)
q SAnD (AAAI)

Time-aware Methods
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What Drives Us?
• Existing works still have much room for improvement
q Long-term and short-term trend, variations

† Upward trend in creatinine indicates the risk of kidney disease
† Abnormal increase in bicarbonate indicates the risk of metabolic alkalosis

q Correlation between trend and variation
† In blood albumin levels: positive correlation indicates an upward trend with a 

gradual increasing pattern of variation, which causes acute inflammation

q Contributions of differences in adjacent variation to the disease diagnosis
† Alternating positive and negative fluctuations in blood glucose indicate abnormal 

insulin secretion



Challenge: Data Sparsity (1/2)
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• EHR is a time series data with limited patient visit records
q Average patient visit is only 10 in 2 years

q Intervals between visits are irregular
† Average interval between two contiguous visits is as large as 2.5 months 

• Traditional time series decomposition methods are usually 
suitable for periodic time-series data
q However, poor Cyclicality due to data sparsity, which makes traditional 

time series decomposition methods inapplicable 



Challenge: Data Sparsity (2/2)
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• EHR is a time series data with limited patient visit records
q Average patient visit is only 10 in 2 years

q Intervals between visits are irregular
† Average interval between two contiguous visits is as large as 2.5 months 

Limit the ability of the deep learning models to detect 
the hidden useful information of medical features 



8

Our Solution



Multi-perspective Patient Representation Extractor 
(MPRE)
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• Frequency Transformation 
Module (FTM)
q Extract the trend and variation

• 2D Multi-Extraction Network 
(2D MEN)
q Capture the correlation

between the trend and variation

• First-Order Difference 
Attention Mechanism 
(FODAM)
q Calculate the contribution of 

differences in adjacent variations
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MPRE - FTM

• Symlets wavelet used to decompose each dynamic feature separately
q Low-frequency components indicate trend information
q High-frequency components express variation information
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MPRE - 2D MEN

• Reshape trend and variation to 
form the 2D temporal tensor

• 2D temporal dilated convolution
q Based on different trend 

and variation spans

• Concatenation operation
q To form the representation 

of dynamic features
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MPRE - FODAM

FODAM is used to adaptively compute the contributions of 
differences in adjacent variations to the disease progression
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MPRE - Prediction Module  

To perform the 
disease prediction
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Performance Evaluation



Datasets

• SCRIPT CarpeDiem Dataset
q 12,495 visit records from 585 patients between June 2018 to March 2022.

q 190 patients had COVID-19, 50 had respiratory viral pneumonia, 252 had 
bacterial pneumonia, and 93 had respiratory failure.
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• Health Facts Database
q 101,767 visit records for 71,518 patients between 1999 and 2008.

q Diabetic patients will suffer from circulatory disease in the future, 30,389 
visits for 26,744 patients



Performance of MPRE and Baseline Methods
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MPRE achieves the best performance than baseline methods

5.84% 8.94% 12.70% 9.74%



Ablation Study
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• (a) shows the average performance 
on SCRIPT CarpeDiem Dataset

• (b) shows the average performance 
on Health Facts Database



Analysis of Symlets
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• Symlet-18 for SCRIPT CarpeDiem Dataset
• Symlet-14 for Health Facts Database



Correlation between Trend and Variation
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• SCRIPT CarpeDiem Dataset 
q Top 5 correlations in dynamic features 

among four respiratory diseases



Attention Scores for Differences (1/2)
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Attention scores reach their pinnacle when the 
patient undergoes the first substantial rise or fall



Attention Scores for Differences (2/2)
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Physicians should pay attention to early 
changes in the patient’s health status



Conclusion
•We propose MPRE for disease prediction
q Extract the trend and variation information

q Capture the correlation between the trend and variation

q Detect the contributions of differences in dynamic features' variations

•We compare the performance of MPRE and state-of-the-art baseline 
methods on the two real-world public datasets
q The experiment results show that MPRE outperforms all baseline methods in terms 

of AUROC and AUPRC
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Thank you for your 
listening!

Questions?


